Frobenius Norm Regularization for the Multivariate Von Mises Distribution

نویسندگان

  • Luis Rodriguez-Lujan
  • Pedro Larrañaga
  • Concha Bielza
چکیده

Penalizing the model complexity is necessary to avoid overfitting when the number of data samples is low with respect to the number of model parameters. In this paper, we introduce a penalization term that places an independent prior distribution for each parameter of the multivariate von Mises distribution. We also propose a circular distance that can be used to estimate the Kullback–Leibler divergence between any two circular distributions as goodness-of-fit measure. We compare the resulting regularized von Mises models on synthetic data and real neuroanatomical data to show that the distribution fitted using the penalized estimator generally achieves better results than nonpenalized multivariate von Mises estimator. C © 2016 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Multivariate von Mises Distribution

Regularization is necessary to avoid overfitting when the number of data samples is low compared to the number of parameters of the model. In this paper, we introduce a flexible L1 regularization for the multivariate von Mises distribution. We also propose a circular distance that can be used to estimate the Kullback-Leibler divergence between two circular distributions by means of sampling, an...

متن کامل

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

The von Mises Graphical Model: Structure Learning

The von Mises distribution is a continuous probability distribution on the circle used in directional statistics. In this paper, we introduce the undirected von Mises Graphical model and present an algorithm for structure learning using L1 regularization. We show that the learning algorithm is both consistent and efficient. We also introduce a simple inference algorithm based on Gibbs sampling....

متن کامل

The von Mises Graphical Model: Structure Learning (CMU-CS-11-108 / CMU-CB-11-100)

The von Mises distribution is a continuous probability distribution on the circle used in directional statistics. In this paper, we introduce the undirected von Mises Graphical model and present an algorithm for structure learning using L1 regularization. We show that the learning algorithm is both consistent and efficient. We also introduce a simple inference algorithm based on Gibbs sampling....

متن کامل

The von Mises Graphical Model: Regularized Structure and Parameter Learning

The von Mises distribution is a continuous probability distribution on the circle used in directional statistics. In this paper, we introduce the undirected von Mises Graphical model and present an algorithm for parameter and structure learning using L1 regularization. We show that the learning algorithm is both consistent and statistically efficient. Additionally, we introduce a simple inferen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Intell. Syst.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2017